Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38199846

ABSTRACT

Microsporidia are difficult to be completely eliminated once infected, and the persistence disrupts host cell functions. Here in this study, we aimed to elucidate the impairing effects and consequences of microsporidia on host DCs. Enterocytozoon hellem, one of the most commonly diagnosed zoonotic microsporidia species, was applied. In vivo models demonstrated that E. hellem-infected mice were more susceptible to further pathogenic challenges, and DCs were identified as the most affected groups of cells. In vitro assays revealed that E. hellem infection impaired DCs' immune functions, reflected by down-regulated cytokine expressions, lower extent of maturation, phagocytosis ability, and antigen presentations. E. hellem infection also detained DCs' potencies to prime and stimulate T cells; therefore, host immunities were disrupted. We found that E. hellem Ser/Thr protein phosphatase PP1 directly interacts with host p38α (MAPK14) to manipulate the p38α(MAPK14)/NFAT5 axis of the MAPK pathway. Our study is the first to elucidate the molecular mechanisms of the impairing effects of microsporidia on host DCs' immune functions. The emergence of microsporidiosis may be of great threat to public health.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Animals , Mice , Antigen Presentation , Phagocytosis , Cytokines , Transcription Factors , Phosphoprotein Phosphatases
2.
Microbiol Spectr ; 12(2): e0361023, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38149855

ABSTRACT

Microsporidia are intracellular fungus-like pathogens and the infection symptoms include recurrent diarrhea and systematic inflammations. The major infection route of microsporidia is the digestive tract. Since microsporidia are hard to fully eliminate, the interactions and persistence of the pathogen within epithelium may modulate host susceptibility to digestive disorders. In this study, both in vitro and in vivo infection models were applied. The alterations of epithelial barrier integrity, permeability, and tight junction proteins after microsporidia infection were assessed on MDCK/Caco-2 monolayers. The fecal intestinal microbiota and tissue alterations after microsporidia infection were assessed on C57BL/6 mice. Moreover, the susceptibility to develop dextran sulfate sodium (DSS)-induced inflammatory bowel diseases (IBDs) was also analyzed by the murine infection model. The results demonstrated that microsporidia infection increased epithelium permeability, weakened wound healing capability, and destructed tight junction protein zonula occludens-1. Microsporidia infection also dysregulates intestinal microbiota. These impairing effects of microsporidia increased host vulnerability to develop enteritis as shown by the murine model of DSS-induced IBD. Our study is the first to elucidate molecular mechanisms of the damaging effects of microsporidia on host epithelium and pointed out the cryptic threats of latent microsporidia infection to public health as reflected by the increased chances of developing more severe diseases.IMPORTANCEMicrosporidia are widely present in nature and usually cause latent and persistent infections in hosts. Given the fact that the digestive tract is the major infection route, it is of great importance to explore the consequences of microsporidia infection on the intestinal epithelial barrier and the risks to the host. In this study, we demonstrated the destructing effects of microsporidium infection on epithelial barriers manifested as increased epithelial permeability, weakened wound healing ability, and disrupted tight junctions. Moreover, microsporidia made the host more susceptible to dextran sulfate sodium-induced inflammatory bowel disease. These findings provide new evidence for us to better understand and develop novel strategies for microsporidia prevention and disease control.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Microsporidia , Microsporidiosis , Humans , Animals , Mice , Colitis/chemically induced , Caco-2 Cells , Dextran Sulfate/adverse effects , Intestinal Mucosa , Mice, Inbred C57BL , Disease Models, Animal
3.
Pathogens ; 11(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36015036

ABSTRACT

Background: Microsporidia are a group of obligated intracellular fungus pathogens. Monocytes and the derivative macrophages are among the most important players in host immunity. The invasion of microsporidia may significantly affect the monocytes maturation and extravasation processes. Methods: We utilized a previously established microsporidia infection murine model to investigate the influences of microsporidia Encephalitozoon hellem (E. hellem) infection on monocyte maturation, releasing into the circulation and extravasation to the inflammation site. Flow cytometry and qPCR analysis were used to compare the monocytes and derivative macrophages isolated from bone marrow, peripheral blood and tissues of E. hellem-infected and control mice. Results: The results showed that the pro-inflammatory group of CD11b+Ly-6C+ monocytes are promoted in E. hellem-infected mice. Interestingly, the percentage of Ly-6C+ monocytes from E. hellem-infected mice are significantly lower in peripheral blood while significantly higher in the inflamed small intestine, together with up-regulated ratio of F4/80 macrophage in small intestine as well. Conclusions: Our findings demonstrated that E. hellem infection leads to promoted monocytes maturation in bone marrow, up-regulation of extravasation from peripheral blood to inflammation site and maturation into macrophages. Our study is the first systematic analysis of monocytes maturation and trafficking during microsporidia infection, and will provide better understanding of the pathogen-host interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...